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Abstract

This paper presents a modified Cascade Correlation learning architecture using new activation
functions, which herein will be called CosExp- and CosGauss functions. The modified
Cascade Correlation is a supervised learning algorithm that automatically determines the size
and topology of the network. The modified Cascade Correlation adds new hidden units one by
one. Whenever a hidden unit has to be added, the modified Cascade Correlation learning
algorithm automatically determines whether the network topology grows vertically or
horizontally, and whether the added hidden unit should be feedforward or recurrent. The
modified Cascade Correlation leads to a compact and elegant network. Experimental results
on the balance scale benchmark problem are provided.

1 Modified Cascade Correlation Learning Architecture

We present a strategy for minimizing the number of hidden layers and hidden units required
by the Cascade Correlation learning algorithm [1] [2] [3]. Readers are expected to be familiar
with this type of neural network. To modify the Cascade Correlation learning architecture a
pool of candidate units is divided into four groups. The candidate units of the first and third
groups are connected with all input units, the bias units and all of the previously added hidden
units. By the second and fourth groups. the candidate units receive connections from the input
units, the bias units and from all previously added hidden units, that are not in the same
hidden layer. Whenever a hidden unit has to be added, the modified Cascade Correlation
automatically determines whether the network topology grows vertically or horizontally, and
whether the added hidden unit should be feedforward or recurrent. In each group, the number
of the candidate units must be the same e.g. four to four or eight to eight. Figure 1 shows the
arrangement of four candidate units of each group in a pool, in which v denotes vertical and /
represents horizontal. The candidate unit with the arrow is recurrent.
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Fig. 1: Arrangement of the candidate units in four groups of the poo!




All candidate units of the same group receive the same input signals and have the same
residual error for each training pattern. Since they do not interact with one another or affect
the active network during training, all of these candidate units of the pool can be trained in
parallel; whenever we decide that no further progress is being made, we install the candidate
whose correlation score with respect to the residual error is the best. Whenever a hidden unit
is added, the modified Cascade Correlation network is developed as follows: the network
grows vertically with a feedforward unit if the candidate unit is chosen from the first group of
the pool, and with a recurrent one if the candidate unit is chosen from the third group of the
pool. The network is generated horizontally with a feedforward unit if the candidate unit
comes from the second group of the pool, and with a recurrent one if the candidate unit comes
from the fourth group of the pool.

To develope the network, a candidate unit is chosen from the first or the third groups of the
pool. This enables a hidden layer to be generated. Figure 2 shows the initial state of a
modified Cascade Correlation network. Figure 3 (a) and (b) represent the adding of the first
hidden unit without recurrent and with recurrent, respectively. To continue generating the
network, candidate units from all groups are chosen. Figure 4 (a), (b), (¢) and (d) depict the
four possible growth of the modified Cascade Correlation network for each creation of hidden
units. The thick arrow in figure 4 (c) and (d) indicates that there is no connection between the
hidden units. Output
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Fig. 2: Initialization of the modified Cascade Correlation network
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Fig. 3: First generation of the modified Cascade Correlation network:
852 (a): with a feedforward unit and (b): with a recurrent unit.
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Fig. 4: Second generation of the modified Cascade Correlation network:
(a): vertical growth. feedtforward, (b): vertical growth, recurrent,
(¢): horizontal growth. feedforward, (d): horizontal growth, recurrent.

2 CosExp- and CosGauss activation functions

The CosExp function [6] is defined shown below:

o £, ()= cose

x —d|). Its derivative is

o f' (x)= _"""_"'(b cos(c|x —d|) + csin(c|x — d))) (d—x#0).
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The CosGauss activation function [7] and its derivative are defined as follows:
o f(x)=e" cos(e(x —d)).

o f'(x)==2b(x —d)e™" ™ cos(c(x —d)) — e~ sin(c(x — d)). 853




The term 5 in the function scales the gradient of the exponential envelope function by
CosExp, and the gaussian envelope function by CosGauss, whereas d determines the position
of the hypersurface. The maximum value of the CosExp- and the CosGauss functions is
always one. ¢ controls the length of the elementary periods. Observing a definite interval on
the x-axis the number of the ridges depends on the value of the parameters ¢ and b. To explain
the relationship between the parameters b and ¢, we consider as an example, the one-
dimensional case of the function. Figure 5 (a) depicts a CosExp function with parameters
b=0.5, ¢=2 and 4=0, and figure 5 (b) shows its derivative function. Figure 6 (a) depicts a
CosGauss function with parameters 5=0.5, ¢=2 and ¢=0, and figure 6 (b) shows its derivative

function.
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Figure 5: (a): CosExp function with parameter 6=0.5, c=2 and ¢=0, and (b): its derivative.
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Figure 6: (a): A CosGauss function with parameters 5=0.5, c=2 and d=0, and (b): its

derivative.
3 Experiments

The modified Cascade Correlation network using the new activation functions was tested with
the well documented balance scale benchmark problem [4][5][8][9][10][11]. This data set was
generated to model psychological experimental results. Each example is classified as having
the balance scale tiping to the right, tiping to the left, or being balanced. The attributes are the
left weight, the left distance, the right weight, and the right distance. The correct way to find
out the class is to compare (left-distance * left-weight) with (right-distance * right-weight). If
they are equal, it is balanced.
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* Number of instances: 625 (49 balanced, 288 left, 288 right)
« Number of attributes: 4 (numeric) + class name = 5
* Attribute information:
1. Class name: 3 (L, B, R)
. Left-Weight: 5 (1, 2, 3.4, 5)
. Left-Distance: 5 (1, 2, 3 . 5)
. Right-Weight: 5 (1, 2, 3.4, 5)
. Right-Distance: 5 (1, 2. 3, 4, 5)
 Class distribution:
1.46.08 percent of L
2.07.84 percent of B
3.46.08 percent of R
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In the experiments the Cascade Correlation(CC), the recurrent Cascade Correlation(RCC) and
the modified Cascade Correlation(M-CC) architectures are used with the following
parameters:

* candChangeThreshold is a measure of how much correlation value of the best candidate unit
must change from its previous best before this change is considered significant.

« candDecay is the amount that the slope of each weight coming into a candidate unit is
decreased in each epoch.

* candEpochs is the maximum number of epochs to train the candidate units before selecting
the best unit and adding it to the network.

e candEpsilon is the epsilon value used to train the candidate units.

o candMu is the maximum growth factor discussed in Fahlman’s paper [1].

e candPatience is the number of epochs required to continue training without noticeable
improvement before training is declared stagnant and stopped.

o errorindexThreshold is the error index to beat when the scoring method is an index (used
when continuous outputs are present). Training is stopped and victory is declared whenever
error index drops below errorIndex Threshold.

» Ncands is the number of candidate units to place in a training pool. The best of these units -

will be selected to be added to the network.

* Npools is the number of training pools.

e outDecay is the amount that the slope of each weight coming into an output unit is decreased
in each epoch.

e outEpochs is the maximum number of epochs to train the output units before training a new
set of candidate units. Usually, the network will stagnate long before this occurs.

s outEpsilon is the epsilon value used to train the output units.

« outErrorThreshold is a measure of how much the error from the outputs must change from
their previous best before this change is considered significant. This is used for stagnation
calculation.

e outMu is the maximum growth factor discussed in Fahlman’s paper [1].

* outPatience is the number of epochs to continue training without noticeable improvement
before training is declared stagnant and stopped.

o scoreThreshold is used to designate how close a binary output has to be with respect to the
correct value, before it is considered correct. The smaller this value is, the closer the
network has to be to the value specified.

e weightRange is used to initialize the random starting weights. These values are between +/-
weightRange. 255

 Nirials is the number of networks to train on this data set.



The used parameter values are listed in table 1.

Used parameter values to test of the balance scale problem

candChangeThreshold candDecay candEpochs candEta candMu

0.04 0.0001 30 0.0001 2.0
errorlndexThreshold candPatience Ncands Npools outDecay

0.05 25 16 1 0.0001

outPatience outMu outEta outEpochs Nitrials
50 2.0 0.0007 30 1
outErrorThreshold scoreThreshold | weightRange
0.01 0.5 1.0

Table 1: Used parameter values to test the balance scale problem.

To solve the balance scale problem, we always take the sigmoid activation function as the
output units of the network. The sigmoid, the tanh, the CosExp (b =0.01,c=1.5and d = 0),
and the CosGauss activation functions (b = 0.01, ¢ = 1.5 and d = 0) are taken as the candidate
and the hidden units. In the following, to train the modified Cascade Correlation network, the
Cascade Correlation network, and the recurrent Cascade Correlation network, four candidate
units in each group of the pool were installed. Initial weights were uniform random values in
the range -0.1 to +0.1.

Figure 7 shows a comparison of the learning error curves between the trained Cascade
Correlation network, the trained recurrent Cascade Correlation network and the trained
modified Cascade Correlation network using the sigmoid activation function as the candidate
and the hidden units. Figure 8 shows the topology of the trained modified Cascade Correlation
network with the sigmoid activation function. The numbers indicated by the arranged hidden
units present the sequential creation of the hidden units. In the following, the activation
function with “*” represents the activation function as the candidate units and the activation
function with “*” denotes activation function as the output unit. Figure 9 and 10 depict the
results with the tanh activation function. Figure 11 and 12 show the results with the CosExp
activation function. Figure 13 and 14 show the results with the CosGauss activation function.
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Fig 7: Comparison of the error curve between the CC-, RCC and M-CC network
using the sigmoid activation function for the candidate and the hidden units.




First hidden laver Last hidden layer

| |
5 @@@@é@@@@@ 0P oL OO |
4 input units @ & @ @ 3 output units
&

Fig. 8: Arrangement of the created hidden units on the hidden layers of the trained M-CC
network using sigmoid activation function for the candidate and the hidden units.
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Fig 9: Comparison of the error curve between the CC-, RCC and M-CC network
using the tanh activation function for the candidate and the hidden units.
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Fig. 10: Arrangement of the created hidden units on the hidden layers of the trained M-CC
network using tanh activation function for the candidate and the hidden units.
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Fig 11: Comparison of the error curve between the CC-, RCC and M-CC network
using the CosExp activation function for the candidate and the hidden units.
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Fig. 12: Arrangement of the created hidden units on the hidden layers of the trained M-CC
network using CosExp activation function for the candidate and the hidden units.
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Fig 13: Comparison of the error curve between the CC-, RCC and M-CC network
using the CosGauss activation function for the candidate and the hidden units.
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Fig. 14: Arrangement of the created hidden units on the hidden layers of the trained M-CC
network using CosGauss activation function for the candidate and the hidden units.
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The values of the
Table 2.

number of created hidden layers and produced hidden units are listed in

Network Activation function Number of the Number of
hidden layers | the hidden units
CC Sigmoid* and sigmoid” 24 24
RCC Sigmoid* and sigmoid® 29 29
M-CC Sigmoid* and sigmoid* 16 22
CcC tanh* and sigmoid® 22 22
RCC tanh* and sigmoid® 24 24
M-CC tanh* and sigmoid® 9 19
CC CosExp* sigmoid’ 14 14
RCC CosExp* sigmoid® 24 24
M-CC CosExp* sigmoid® 8 13
CC CosGauss* sigmoid’ 14 14
RCC CosGauss* sigmoid’ 21 21
M-CC CosGauss* sigmoid® 7 14

Table 2: The number of the created hidden units and the hidden layers of the trained CC-,
RCC- and M-CC network to solve of the balance scale problem.

As a test of generalization, 438 samples (70%) for training and 187 samples (30%) for testing
of the 625 instances are ramdomly chosen. We ran five trials of the Cascade Correlation
network, the recurrent Cascade Correlation network and the modified Cascade Correlation
network on the train and the test sets. The results are as follows:

Network Activation function Test set A(j,curacy o Classification
testing samples
CC sigmoid * and sigmoid® 187 172.0 92.0%
RCC sigmoid * and sigmoid® 187 168.3 90.0%
M-CC sigmoid * and sigmoid® 187 172.0 92.0%
CC tanh* and sigmoid® 187 173.3 92.7%
RCC tanh* and sigmoid® 187 166.3 88.9%
M-CC tanh* and sigmoid® 187 166.3 88.9%
CcC CosExp* and sigmoid” 187 168.0 89.8%
RCC CosExp* and sigmoid* 187 155.0 82.9%
M-CC CosExp* sigmoid® 187 173.6 92.8%
CC CosGauss* sigmoid® 187 170.0 90.7%
RCC CosGauss* sigmoid® 187 156.5 83.7%
M-CC CosGauss* sigmoid’ 187 170.7 91.3%

Table 3: Listing of the score on the test set by the balance scale problem.
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3 Conclusion

In this paper, we show that the results using the modified Cascade Correlation algorithm with
the CosExp- and the CosGauss activation functions as candidate units is slightly improved
with respect to Cascade Correlation (with the same activation functions) and the nets are
much smaller than the original Cascade Correlation architecture. The modified Cascade
Correlation leads to compact and elegant network. Future work will be devoted to finding
optimal parameter values of these activation functions for general purpose problems by means
of evolutionary algorithms.

References

[6]

[7]

[°]

[10]

[11]

860

Fahlman, S. E.: “Faster-learning variations on back-propagation. An empirical study”,
Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann,
1988.

Fahlman, S. E. and Lebiere, C.. “The cascade-correlation learning architecture”,
Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990.
Fahlman, S. E.. “The Recurrent Cascade-Correlation Architecture”, Advances in
Neural Information Processing Systems 3, pp. 190-198, Morgan Kaufmann Publishers,
Inc., 1991.

Klahr, D., & Siegler, R.S.: “The Representation of Children's Knowledge”, In H. W.
Reese & L. P. Lipsitt (Eds.), Advances in Child Development and Behavior, pp. 61-116.
New York: Academic Press, 1978.

Langley, P.: “A General Theory of Discrimination Learning”, In D. Klahr, P. Langley,
and R. Neches (Eds.), Production System Models of Learning and Development, pp. 99-
161. Cambridge, MA: MIT Press, 1987.

Lee, S. W. and Moraga, C.: “Neural Networks Using a Cosine-Modulated Symmetric
Exponential Activation Function”, International Conference on Information Processing
and Management of Uncertainty in Knowledge Based Systems (IPMU °96), Granada,
Spain, July, 1996.

Lee, S. W. and Moraga, C.: “4 Cosine-Modulated Gaussian Activation Function for
Hyper-Hill Neural Networks”, Third International Conference on Signal Processing
(ICSP ’96), Beijing, China, October, 1996.

Newell, A.: “Unified Theories of Cognition. Cambridge”, MA: Harvard University
Press, 1990.

McClelland, J. L.: “Parallel Distibuted Processing. Implications for Cognition and
Development”, Technical Report AIP-47, Department of Psychology, Carnegie-Mellon
University, 1988.

Siegler, R. S.: “Three Aspects of Cognitive Development”, Cognitive Psychology, 8, pp.
481-520, 1976.

Shultz, T., Mareschal, D., and Schmidt, W.: “Modeling Cognitive Development on
Balance Scale Phenomena”, Machine Learning, Vol. 16, pp. 59-88, 1994.




