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Fig. 4: Second generation of the modified Cascade Correlation network: 
(a): vertical gro\v1h. feedforward, (b): vertical growth, recurrent, 

(e): horizontal grow1h. feedforward, ( d): horizontal grovvth, recurren t. 

2 CosExp- and CosGauss activation fu:nctions 

The CosExp function [6] is defined sh0\\11 below: 

® r,c~ (x) = e-hlx-d COS(cix-- ). lts deriYative is 

(d-x:;t:O). 

The CosGauss activation function [7] and its derivative are defined as follows: 

® fuct (x) = e-h(x-dJ' cos(c(x-- d)). 

- j' ( 1 __ 2bf d) -h(x-d) 2 ( ( d).) -h(x-d)2 
'i1l ,1u Xj-- -- ,x-- e COS C X-- --Ce 



The term b in the function scales the gradient of the exponential envelope function by 
CosExp, and the gaussian envelope function by CosGauss, whereas d determines the position 
of the hypersurface. The maximum value of the CosExp- and the CosGauss functions is 
always one. e controls the length of the elementary periods. Observing a definite interval on 
the x-axis the number ofthe ridges depends on the value ofthe parameters e and b. To explain 
the relationship between the parameters b and e, we consider as an example, the one
dimensional case of the function. Figure 5 (a) depicts a CosExp function with parameters 
b=0.5, e=2 and d=O, and figure 5 (b) shows its derivative function. Figure 6 (a) depicts a 
CosGauss function wíth parameters b=0.5, e=2 and d=O, and figure 6 (b) shows its derivative 
function. 
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Figure 5: (a): CosExp function with parameter b=0.5, e=2 and d=O, and (b): its derivative. 
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Figure 6: (a): A CosGauss function with parameters b=0.5, e=2 and d=O, and (b): its 
derivative. 

3 Experiments 

The modified Cascade Correlation network using the new activation functions was tested with 
the well documented balance scale benchmark problem [4][5][8][9][10][11]. This data set was 
generated to model psychological experimental results. Each example is classified as having 
the balance scale tiping to the right, tipíng to the left, or being balanced. The attributes are the 
left weíght, the left distance, the right weight, and the right dístance. The correct way to find 
out the class is to compare (left-distance * left-weight) with (right-distance * right-weight). If 
they are equal, it is balanced. 
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• Number of instances: 625 ( 49 balanced, 288 left, 288 right) 
• Number of attributes: 4 (numeric) + class name = 5 
• Attribute information: 

l. Class name: 3 (L, B, R) 
2. Left-Weight: 5 (1, 2, 3. 4, 5) 
3. Left-Distance: 5 (1, 2, 3, 4. 5) 
4. Right-Weight: 5 (1, 2, 3. 4, 5) 
5. Right-Distance: 5 (1, 2. 3, 4, 5) 

• Class distribution: 
l. 46.08 percent ofL 
2. 07.84 percent ofB 
3. 46.08 percent ofR 

In the experiments the Cascade Correlation(CC), the recurrent 
the modified Correlation(M-CC) 
parameters: 

Threshold is a measure of how much correlation 
must change from its prev·ious best before this change is 

• candDecay is the amount that the slope of each weight 
decreased in each epoch. 

• candEpochs is the maximum number of epochs to train the candidate units ""'r ... ,. . ., 

the best unit and adding it to the network. 
• candEpsilon is the epsilon value used to train the candidate units. 
® ccmdJ1u is the maximum grovvth factor discussed in Fahlman' s paper [1]. 
• ccmdPatience is the number of epochs required to without 

improwment befare training is declared stagnant and stopped. 
~ errorlndexThreshold is the error index to beat when the scoring method is an 

when continuous outputs are present). Training is stopped and · is declared 
error index drops below errorindexThreshold. 

is the number of candidate units to place in a training pooL The best of 
vúll be selected to be added to the network. 

• J\pools is the number oftraining pools. 
" outDecay is the amount that the slope of each weight coming an output unit is 

in each epoch. 
outEpochs is the maximum number of epochs to train the output units before 
set of candidate units. Usually, the network will stagnate long before this occurs. 

• outEpsilon is the epsilon Yalue used to train the output units. 

a r1ev/ 

• outErrorThreshold is a measure of how much the error from the outputs must change frorn 
their previous best befare this change is considered significant This is used for 
calculation. 

• outl'vfu is the maximum growth factor discussed in Fahlman's paper [1]. 
• outPatience is the number of epochs to continue training without 

befare training is declared stagnant and stopped. 
0 seo re Threshold is used to designate how el ose a binary output has to 

correct value, before it is considered correct. The smaller this 
network has to be to the value specified. 

• weightRange is used to initialize the random starting ~vveights. 
\VeightRange. 

• Ntrials is the number of networks to train on this data set. 

are -r-/-
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Fig. 8: Arrangement of the created hidden units on the hidden 
network using sigmoid activation function for the candidate 

trained M-CC 
hidden units. 
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Fig 9: Comparison ofthe error curve between the CC-, RCC and M-CC network 
using the tanh activation function for candidate and the hidden units. 
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Fig. 10: Arrangement ofthe created hidden units on the hidden layers ofthe NI-CC 
network using tanh activation function for the candidate and the hidden units. 
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Fig. 12: Arrangement ofthe created hidden units on the hidden layers ofthe trained M-CC 
network using CosExp activation function for the candidate and the hidden units. 
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Fig 13: Comparison ofthe error curve between the CC-, RCC and M-CC network 
using the CosGauss activation function for the candidate and the hidden units. 
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ce 
RCC 

M-CC 

ce 
RCC 

M-CC 

ce 
RCC 

ce 
RCC 

IV!-CC 

the of 

Activation function 

Sigmoid* and sigmoid" 

Sigmoid* and sigmoid. 

Sigmoid* and sigmoid" 

tanh * and sigmoid. 

tanh * and sigmoid. 
1 

tanh * and sigmoid" 

CosExp* sigmoid. 

C osExp* sigmoid' 
' ' 

CosExp* sigmoid. 

CosGauss* sigmoid. 

CosGauss* sigrnoid. 

CosGauss* sigmoid" 

are 

Number ofthe Number of 
hidden layers the hidden units 

24 24 
29 f 29 
16 22 
22 22 

--
24 

9 1~ 14 14 

24 24 ~ 
1 1 

8 13 1 

14 J--~-=l 21 1 21 

7 i 14 1 

Table 2: The number ofthe created hidden units and the hidden layers ofthe 
RCC- and M-CC network to solve ofthe balance scale problem. 

As a test of generalization, 438 samples (70%) for training and 1 samples 
of the 625 instances are ramdomly chosen. ran five trials of Cascade 
network, the recurrent Cascade Correlation network and the modified Cascade Correlation 
network on the train and the test sets. The results are as follows: 

ActiYation Test set Accuracy on 
1 "l 'fi . 1 "v ass1 1catwn , 

testing samples 
CJ2 QD/~~ ce sigmoid * and sigmoidc 187 172.0 / • J ¡ 

RCC sigmoid * and sigmoid. 187 168.3 90.0% 1 

M-CC sigmoid * and sigmoid0 1 J 172.0 

ce tanh * and sigmoid" 187 173~3 92.7% 

RCC tanh* and sigmoid" 187 166.3 88.9% 1 

IVI-CC tanh* and sigmoid. 187 166.3 88.9% 
1 

ce CosExp* and sigmoid. 187 168.0 89.8% 

RCC CosExp* and sigmoid. 187 155.0 82.9% 1 

M-CC 
1 

CosExp* sigmoid. 187 173.6 .8% 
1 

ce CosGauss* sigmoid. 187 170.0 90.7% l 
RCC CosGauss* sigmoid. 187 156.5 .7% 

' 
M-CC CosGauss* sigmoid. 187 170.7 91 J 

Table 3: Listing of the score on test set by the balance scale 



3 Conclusion 

In this paper, we show that the results using the modified Cascade Correlation algorithm with 
the CosExp- and the CosGauss activation functions as candidate units is slightly improved 
with respect to Cascade Correlation (with the same activation functions) and the nets are 
much smaller than the original Cascade Correlation architecture. The modified Cascade 
Correlation leads to compact and elegant network. Future work will be devoted to finding 
optimal parameter values ofthese activation functions for general purpose problems by means 
of evolutionary algorithms. 
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